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Av. José Manuel Infante 553
Santiago, Chile

ABSTRACT

We present a regularization scheme for diffusion tensor images, that
respects the geometrical structure of diffusion ellipsoids and does
not introduce artifacts such as anisotropy drops.

The method can be stated as a variational problem and solved
by means of a gradient flow. The main ingredient is the notion of a
distance between two ellipsoids that considers differences in shape
as well as differences in orientation.

The method is specialized to the case of cylindrically-symmetric
ellipsoids and implemented in terms of ordinary vector manipula-
tions such as cross and dot products.

The regularization algorithm is tested using a synthetic tensor
field and a dataset acquired from a diffusion phantom. In both cases
the algorithm was able to reduce the noise from the tensor field.

Index Terms— Biomedical magnetic resonance imaging,
biomedical image processing, eigenvalues and eigenfunctions,
smoothing methods, variational methods

1. INTRODUCTION

Diffusion Weighted Imaging (DWI) is a modality of Magnetic Res-
onance that measures the water molecule’s diffusivity along a set
of defined directions by means of the manipulation of the magnetic
gradients [1]. By means of a tensor model (DTI), it is possible to
describe as an ellipsoid the average distribution of movement of the
water molecules within one voxel.

The principal axis of this ellipsoid will correspond to the
eigevector associated to the biggest eigenvalue. For the case of
the human brain tissue, this direction will correspond to the orienta-
tion of the fibers of white matter [2]. Therefore, with the information
provided by DTI, we can do tractography and estimate the paths of
the fibers of white matter [3].

Since the acquisition technique takes a long time, low Signal-to-
Noise ratio (SNR) images are obtained. The present work is devoted
to filter the noise of the images in order to present image results with
less artifacts.

2. PRELIMINARIES

2.1. Tensor fields

The diffusion of water molecules in biological tissues can be ef-
fectively described using an ellipsoid that represents the average
displacements produced by random forces, as depicted in Fig. 1.
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Such diffusion ellipsoid can be described by means of a symmet-
ric positive-definite 3 × 3 matrix: the diffusion tensor. Geometrical
structure of the ellipsoid, for instance its semiaxes, can be extracted
from the eigenvalues and eigenvectors of the tensor.

Fig. 1. The diffusion ellipsoid.

Eigenvalues λi of diffusion tensor D at each voxel result from
the spectral decomposition:

D = RT ΛR ,

where R ∈ SO(3) corresponds to the orientation of the ellipsoid,
and Λ, is a diagonal matrix built from the (positive) eigenvalues that
corresponds to the ellipsoid shape:

Λ = diag(λ1, λ2, λ3) , λ1 ≥ λ2 ≥ λ3 > 0 .

The estimation of the entries of the diffusion tensors is per-
formed independently at each voxel using the Stejskal-Tanner equa-
tion [4]:

log(Si/S0) = −bgT
i Dgi , i = 1, 2, . . . , Ndirs ,

where S0 is a noise-free image and Si(i = 1, . . . , Ne) are diffusion
weighted images acquired with gradient pulses along direction gi ∈
R

3 (|gi| = 1). The factor b measures the intensity and duration of
the pulsed gradients. If Ne ≥ 6 the previous equations can be solved
for the six unknowns (Dxx, Dxy, Dxz, Dyy, Dyz, Dzz) in the least-
squares sense.

2.2. Cylindrically symmetric ellipsoids

To simplify the mathematical derivation of the regularization
method, we will make the following assumption: at each voxel
the diffusion has linear anisotropy λ1 � λ2 ≈ λ3. Cross-sections
of ellipsoids are circular. This relation is valid in the white matter
of the brain, where DTI identifies a well-defined principal direction
that captures most of the diffusion.
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Then we can write the diffusion tensor using a single orientation
u and two diffusivities; one longitudinal λ‖ and other transversal
λ⊥:

D = (λ‖ − λ⊥)uuT + λ⊥Id .

The vector u takes values on the surface of a unitary sphere S2

where antipodal points u and −u are identified, as shown in Fig. 2.

λ‖

λ⊥

λ‖

λ⊥

Fig. 2. Cylindrically-symmetric ellipsoids

2.3. Regularization of diffusion weighted images

A first approach to denoising would be to process the grayscale im-
ages Si, before the estimation of tensors, using standard filtering
schemes.

2.3.1. Total Variation

We consider the model of Total Variation, developed by Rudin,
Osher, and Fatemi [5], that reduces the noise but preserves rapid
and isolated variations. This feauture should in principle minimize
partial-volume artifacts that are created when signals coming from
different tissues, for instance white matter and cerebro-spinal fluid,
are mixed.

The model is based on a functional TV that results from adding
local variations between each voxel and its neighbors (here we use
a three dimensional neighborhood of 6 voxels). Using notation bor-
rowed from graph theory (after [6]):

TV [S]
def
=
X
α∈Ω

0
@X

β∈ωα

wα,β (Sα − Sβ)2

1
A

1/2

,

where Ω is the whole 3-D domain of the signal S, ωα is the set of
neighbors of voxel α, and wα,β is a positive weight that depends on
the distance between each pair of neighbors.

To define a well-posed minimization problem, one must keep S
close from the noisy signal S(0). The voxel-wise difference defines
a fidelity functional:

F [S, S(0)]
def
=
X
α∈Ω

(Sα − S(0)
α )2 .

We could minimize TV [S] imposing a given value for F [S, S(0)],
or the other way around. This could be better framed introducing a
positive Lagrange multiplier η:

J [S, S(0)]
def
= TV [S] +

η

2
F [S, S(0)] .

Minimizing J [·] using a large value of parameter η gives images with
mild smoothing, using a small value of η gives a smooth image with
little similarity to the original. Appropriate values for parameter η

depend on the specific application and the scale of values of image
S(0).

A general and efficient minimization scheme that continuously
transforms a given image S(0) into a regularized version can be ob-
tained considering a gradient flow.

It can be proved that for a S(t) that satisfies the ODE:

dSα

dt
=
X

β∈ωα

„
1

eα
+

1

eβ

«
wα,β(Sβ − Sα) + η(S(0)

α − Sα) ,

where the local variation eα =
qP

β∈ωα
(Sβ − Sα)2, the value of

J [S(t), S(0)] does not increase and will converge in general.

2.3.2. Multi-channel Total Variation

One could also process the whole dataset Si(i = 0, . . . , Ne) (Ne

diffusion weighted images and one diffusion-free image) at the same
time. Following [7], we define the distance between two voxels:

d(Sα, Sβ)
def
=

 
NeX
i=0

(Sα,i − Sβ,i)
2

!1/2

,

and we would get for each channel i:

dSα,i

dt
=
X

β∈ωα

„
1

eα
+

1

eβ

«
wα,β(Sβ,i −Sα,i) + η(S

(0)
α,i −Sα,i) ,

where the local variation:

eα
def
=

0
@ NeX

i=0

X
β∈ωα

(Sα,i − Sβ,i)
2

1
A

1/2

effectively couples all the channels. As the flow progresses, edges in
one channel affect the smoothing in all other channels.

A similar multi-channel approach could be applied after the
estimation of the diffusion tensors D, regularizing the entries
Dxx, Dyy, Dzz, Dxy, Dxz, Dyz , either separately or coupled.
Other approaches have considered the regularization of some factor-
ization of D (see for instance [8, 9]).

But all the previously described methods suffer from the same
limitation: the regularization makes ellipsoids more spherical. This
artefact is referred as ‘ellipsoid swelling’ (see Fig. 3) and can be rec-
ognized as a loss of anisotropy. By linearly combining neighboring
tensors that are not perfectly aligned, more spherical ellipsoids are
created.

Fig. 3. Ellipsoid swelling
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3. REGULARIZATION OF TENSORS

A number of regularization approaches for DTI have been proposed
to reduce the noise and overcome the swelling, most notably [10,
11]. Here we build on previous works but choose to keep the ge-
ometrical concepts as clear as possible, using measures of distance
between two ellipsoids inspired in rotations.

For cylindrically-symmetric ellipsoids, we define a distance by
considering differences in orientation and shape:

d2(Dα, Dβ)
def
= d2

or(uα, uβ) + s‖(λ‖,α − λ‖,β)2 +

s⊥(λ⊥,α − λ⊥,β)2 , (1)

where s‖, s⊥ are two positive weights. For the distance between two
orientations we take the sharp angle:

dor(uα, uβ) = arcsin(||u1 × u2||) ∈
h
0,

π

2

i
. (2)

If u1, u2 are parallel then dor(u1, u2) = 0. This definition is the
geodesic distance and also satisfies:

dor(u1, u2) = dor(−u1, u2) = dor(u2, u1) .

We then define a functional that includes local variations of
neighboring ellipsoids:

TV [D]
def
=
X
α∈Ω

eα(Dα) , eα
def
=

0
@X

β∈ωα

wα,β d2(Dα, Dβ)

1
A

1/2

,

(3)
and a functional that measures the distance to the original tensor field
D(0):

F [D, D(0)]
def
=
X
α∈Ω

d2(Dα, D(0)
α ) , (4)

where Ω is the set of voxels with linear anisotropy, and ωα is the set
of neighbors of α.

As before, we introduce a positive multiplier η and pose the fol-
lowing variational principle:

J [D, D(0)]
def
= TV [D] +

η

2
F [D, D(0)] . (5)

Using vα,β = θe, where θ is the angle and e is the axis of the
rotation that transforms uα into uβ , it can be shown that the gradient
flow can be written in the form of the following three differential
equations:

duα

dt
=

“ X
β∈ωα

„
1

eα
+

1

eβ

«
wα,βvα,β +

η vα,α(0)

”
× uα , (6)

dλ‖,α

dt
=

X
β∈ωα

„
1

eα
+

1

eβ

«
wα,β(λ‖,β − λ‖,α) +

η(λ
(0)

‖,α − λ‖,α) , (7)

dλ⊥,α

dt
=

X
β∈ωα

„
1

eα
+

1

eβ

«
wα,β(λ⊥,β − λ⊥,α) +

η(λ
(0)
⊥,α − λ⊥,α) , (8)

plus some appropriate initial conditions. As with the multi-channel
regularization presented in Section 2.3.2, the flow defined by Eqns.

(6–8) makes the value of the functional J [·] to decrease and couples
the smoothing of orientations and shapes.

Efficient iterative implementation of the gradient flow relies on
the Rodrigues’ formula for the rotation of orientations [11]. There is
no need of projecting or normalizing the orientations. After the flow
converges, the diffusion tensor field D can be reconstructed from
u, λ‖, λ⊥. Regularization of tensor fields should improve the re-
sults of tractography algorithms that track likely trajectories of neu-
ral fibers but break down after reaching voxels of low anisotropy or
highly incoherent orientations.

4. EVALUATION

For the testing of the proposed algorithm we used two examples of
tensor fields.

4.1. Synthetic tensor field

The first example is a synthetic tensor field taken from Ref. [8]. It is
a 50× 50× 5 volume, where initially each one of the five horizontal
slices was divided into four quadrants, with the following orienta-
tions u = (0, 1, 0), u = (1, 1, 0)/

√
2, u = (1,−1, 0)/

√
2, and

u = (0, 0, 0). The bottom-left quadrant was left without a coherent
orientation. Tensors D were built using λ‖ = 1, λ⊥ = 1/3 every-
where. Gaussian noise (0 mean, 0.2 standard deviation) was added
to each component of the tensor D (preserving its symmetry). After
tensors were diagonalized, the regularization algorithm was applied
to the noisy u, λ‖, λ⊥ fields.

Results are shown using the RGB colorcode: red means |ux| ori-
entation, green means |uy|, and blue means |uz|. Intensity is modu-
lated by anisotropy: bright color means λ⊥ � λ‖, dark color means
λ‖ ≈ λ⊥. A single slice is shown in Fig. 4, (a) before, and (b) after
the regularization. Please notice that the color code is ambiguous;
orange represents both (1,−1, 0) and (1, 1, 0) orientations, which
are actually perpendicular.

The algorithm was able to reconstruct the right orientation in
each of the four quadrants, preserving a clear boundary between
them and removing noisy spots. The algorithm did not create a spu-
rious orientation in the bottom-left quadrant.

(a) (b)

Fig. 4. Regularization of a synthetic tensor field

4.2. Diffusion phantom

For a more realistic test we used a phantom provided by the Radiol-
ogy Department of the Deutsches Krebsforschungszentrum (DKFZ)
and described in Ref. [12]. The phantom consists of a single polyfil
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polyamid fiber (diameter 50 μm) which was wound 30, 000 times
around an acrylic spindle, as shown in Fig. 5. This fiber has similar
diffusion and relaxation properties than those of white matter, and
verifies the linear anisotropy assumption used in this work and ex-
plained in Section 2.2. The phantom was put into a water bath and
its diffusion weighted images were acquired using a Philips Intera
1.5T scanner (b = 800 s/cm2, 6 directions, 10 averages, voxel size
= 1.75 × 1.75 × 2.5 mm3). Only two slices (perpendicular to the
axis of the spindle) were processed.

Fig. 5. Polyamid fiber phantom

η = 20 η = 10 η = 0

Fig. 6. Regularization of a phantom tensor field

In Fig. 6 results are presented for three values of the multiplier η.
As smaller values of the multiplier are used, smoothing is performed
more aggressively. Notice that, opposite from regularization of gray-
scale images, using η = 0 does not lead to homogeneous fields. The
intrinsic curvature of the space of ellipsoids creates many local min-
ima where the gradient flow converges. These minima preserve some
properties of the reference field D(0). Looking attentively Fig. 6,
one could appreciate that between η = 20 and η = 10 there are only
some minor changes in intensity (shape) and color (orientation).

Preliminary results indicate that best results are obtained when
the following sequence of steps is used: (1) regularization of DWI
dataset using multi-channel method, (2) estimation of DTI, and (3)
regularization of DTI with proposed model.

The impact of local minima could be reduced by a multi-
resolution scheme built on top of the present regularization algo-
rithm. The whole approach can be generalized to diffusion tensors

of any shape, defining a distance between two tensors (see Eqn. (1))
that includes six terms: the three angles between the correspond-
ing pairs of eigenvectors, and the three differences between the
corresponding pairs of eigenvalues.

5. CONCLUSIONS

The present tensor field regularization framework extends the notion
of distance to the orientation and shape of axially-symmetric tensors.
Using a gradient flow built from a variational principle, we were able
to reduce the noise of DTI datasets and increase the directional ho-
mogeneity of fiber bundles of a phantom. The proposed method can
potentially improve results of tractography in regions of high SNR.
The approach can be extended to non-degenerate ellipsoids, defining
a distance that takes into account the second and third eigenvectors
and eigenvalues.
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